

Clinical trials for medical devices: FDA and the IDE process

Owen Faris, Ph.D.

Deputy Director
Division of Cardiovascular Devices
Office of Device Evaluation
Center for Devices and Radiological Health, FDA

What is a Medical Device?

The Section 201(h) of the Food, Drugs and Cosmetics Act defines a medical device as any healthcare product that does not achieve its principal intended purposes by chemical action or by being metabolized.

- As simple as a tongue depressor or a thermometer
- As complex robotic surgery devices

Device Classification

Medical Device Classes

- Class I
 - General Controls
 - Most exempt from premarket submission
- Class II
 - Special Controls
 - Premarket Notification [510(k)]
- Class III
 - Premarket Approval
 - Require Premarket Application [PMA]

510(k) Premarket Notification

- Substantial equivalence
- 10-15% require clinical data
- Performance testing
- Usually confirmatory
- Type of study dictated by:
 - Ability of bench and animal testing to answer questions
 - Amount of difference between subject device and predicate

PMA Premarket Approval Application

- Establish reasonable assurance of safety and effectiveness
- Bench-Animal-Human
- Clinical Studies
 - Feasibility and pivotal

Stages of review for PMA device

Today's focus:

What is an Investigational Device Exemption (IDE)?

FDA approval of an IDE is required for US human study of a significant risk device which is not approved for the indication being studied.

Device trials are unique

- Trials tend to be smaller than drug trials
- Some novel, many "me-too"
- Many difficult to blind, randomize, control
- Many depend on physician technique
- Device modifications occur during trial
- Endpoints highly diverse
- Typically, single pivotal trial follows feasibility stage(s)
- Designed to support a "reasonable assurance of safety and effectiveness" for the marketing application

Types of IDEs

- Feasibility study
 - May provide support for a future pivotal study or may be used to answer basic research questions
 - Not intended to be the primary support for a marketing application
 - Endpoints and sample size generally not statistically driven
 - Often required by FDA prior to pivotal study to assess basic safety and potential for effectiveness
 - Generally ~10-40 patients but may be larger
 - FDA review is primarily focused on safety and whether the potential benefit or value of the data justifies risk

Types of IDEs

- Pivotal study
 - Generally intended as the primary clinical support for a marketing application
 - Designed to demonstrate a "reasonable assurance of safety and effectiveness"
 - Endpoints and sample size statistically driven
 - Designed to assess both safety and effectiveness
 - FDA review is much more complex

FDA's Feasibility IDE Review

- Focused on safety
- Critical issues
 - Reasonable study conceptually?
 - Adequate preclinical validation of device?
 - Why is clinical really the next necessary step?
 - Appropriate mitigation of potential risks?
 - Appropriate enrollment criteria?
 - Patients adequately informed?
 - Sample size appropriate?

FDA's Pivotal IDE Review

- Focused on safety <u>and</u> plan for collecting and evaluating study data
- Additional critical issues
 - Trial endpoints
 - Randomization, blinding, follow-up, etc
 - Study conduct and monitoring
 - Statistical analysis plan

Basic Submission Elements

- Background of medical issue, the study goals, and why this study will further the science
- <u>Detailed</u> description of the device under study
- Previous studies (preclinical and clinical)
 - Summary of available data
 - Why is a clinical study needed at this stage?
 - What evidence supports the safety of this study/device and the potential for the study data to be meaningful?
 - Are there outstanding safety questions that should be addressed with preclinical data?

Basic Submission Elements

- Risk analysis
 - What are the potential risks to the patient?
 - Does the study mitigate the risks where possible?
 - Are the risks outweighed by the potential for benefit and/or value of the study
- Patient monitoring and follow-up plan
- Inclusion and exclusion criteria
- Informed consent document
- Sample size and number of investigational centers, with justification

- Primary and secondary endpoints
 - Discussion of appropriateness of endpoint parameters, hypotheses, and success criteria
- Basic trial design
 - Controlled? If not, why not?
 - Randomized? If not, why not?
 - Blinded? If not, why not?

- Trial conduct and study monitoring
 - Data handling and adjudication process
 - Sponsor blinding
 - Independent committees
 - Case report forms
 - Is the right information being gathered to support the study endpoints and are investigators adequately prompted to report adverse events?

- Statistical analysis plan
 - Clearly defined S & E hypotheses
 - Type-1 error and multiplicity
 - Missing data handling
 - Sample size calculations and assumptions
 - Assessment of critical covariates
 - Adaptive design plans
 - Interim analyses and early stopping rules
 - Data handling

Primary Endpoint Design

- Should evaluate the safety and effectiveness of the device in the population expected to be indicated.
- Generally divided into
 - 1 or more "safety" endpoints
 - 1 or more "effectiveness" endpoints
- A study would be considered successful if both the safety and effectiveness endpoints are met.

Primary Endpoint Design

- The clinical protocol should clearly and prospectively detail:
 - Methods for obtaining endpoint data
 - Definitions for what will be counted as a primary event in the analysis
 - Situations in which patient data will be excluded
 - How missing data will be handled
 - How the impact of covariates will be assessed

Sample Size & Follow-Up

- Driven by either:
 - Primary safety endpoint
 - Primary effectiveness endpoint
- Minimum number of patients and/or minimum duration of follow-up may be required depending on:
 - Understanding of the safety and effectiveness of the device
 - Concerns regarding durability of device safety or effectiveness

Secondary Endpoints

- Generally used to evaluate additional meaningful claims
- Generally only considered if primary endpoints are successful
- Should be used to provide further insight into the device effects and mechanisms of action
- Definitions and analysis methods should be clearly detailed prospectively
- Not considered "statistically significant" unless a pre-specified alpha allocation plan is in the protocol, even if the p-value is < 0.05

Provide enough detail to avoid ambiguity once the trial has started.

FDA's IDE Review Decisions

Approval

- Approves the trial for a specified number of patients and investigational centers
- Approval with Conditions
 - Allows sponsor to begin the trial if the sponsor agrees to address the conditions (deficiencies) from the conditional approval letter within 45 days
- Disapproval
 - Trial may not start until sponsor addresses the deficiencies from the letter, submits this information to FDA, and receives approval

Revision to FD&C Act, July 2012

FDA shall not disapprove an IDE because:

- the investigation may not support a substantial equivalence or de novo classification determination or approval of a device;
- the investigation may not meet a requirement, including a data requirement, relating to the approval or clearance of a device; or an additional or different investigation may be necessary to support clearance or approval of the device.

Recent Revision to FD&C Act

This means that an IDE cannot be disapproved on the basis of FDA's belief that the study design is inadequate to support a future PMA, 510(k), HDE, or de novo classification.

Does study failure imply PMA disapproval?

- Often but not always.
- PMA approval is based on a Benefit-Risk assessment
- FDA is always willing to review all available data to determine whether there is a reasonable assurance that the device safe and effective.

Does study failure imply device disapproval?

Alternatives

- Unexpected safety concerns are outweighed by stronger than expected benefit
- Inconclusive study result is supplemented by other clinical or non-clinical data
- Device is safe and effective for some limited indication or patient population
- All of these alternatives may raise serious type-1 error concerns. FDA is therefore very conservative in its consideration of these alternatives.

Does study success imply device approval?

- Often but not always
- Sometimes the primary endpoints do not capture a serious unexpected safety concern that is observed in the trial.
- Other clinical or non-clinical data may conflict with the study result.
- Can result in:
 - Device disapproval
 - Requirement for more data
 - Limited indication

Some Generic Case Examples

Cardiovascular Devices

- LVADs
- Pacemakers, ICDs, leads
- Cardiac resynchronization therapy
- Ablation catheters and generators
- Cardiac monitoring devices
- Heart valves
- Stents
- Cardiac occluders

Example 1: Novel heart failure device study

- Novel implantable stimulation device to treat heart failure
- Key characteristics
 - Implant has serious risks
 - Device is programmable
 - Benefit may be symptomatic/functional
 - Patients can feel the stimulation
- Previous data
 - Feasibility data promising but single-arm

Study Considerations

- Safety
 - Require long-term follow-up
 - Safety success criteria should be rigorous to balance symptomatic benefit
- Effectiveness
 - Must be randomized to assess benefit
 - Symptomatic/functional benefit requires blinding
 - But how does one blind this study?

Company Proposal

- Implant device in all subjects
- Randomize to on vs. sham stimulation
- 6-month follow-up, after which device may be turned on or off in any subject
- Safety: all subjects pooled, compared to objective performance criterion (OPC)
- Effectiveness: Responder's analysis of quality of life (QOL) and six minute walk distance

Problems with this plan

- 6-month follow-up
 - What if effect is short-lived?
 - What if long-term safety concerns arise?
- Sham stimulation
 - Is there enough data to know how to design true sham?
 - Will blinding truly be maintained?

Problems with this plan

Safety

 Endpoint evaluates only procedure and presence of the device, not effect of the therapy

Effectiveness

- 6MW and QOL highly placebo sensitive
- Even if demonstrated, will benefit in these endpoints result in appropriate risk-benefit?

FDA's advice

- 12 month follow-up
- Multiple, rigorous safety endpoints
- If sham, more data needed to support blinding
- More objective effectiveness endpoints
 - Mortality/hospitalization composite
 - VO2 max or ventilatory threshold
- Show reasonable risk-benefit profile

Example 2: MRI Conditional Pacemaker

- Concerns
 - Proper device function
 - Thermal or arrhythmogenic injury from MRI
- Design: Device implanted in all subjects, randomization to MRI or No-MRI.
- Safety/Effectiveness
 - MRI Adverse events
 - Pacing parameter changes (indicative of injury)
- Additional restrictions
 - At least 200 subjects to receive MRI

Example 2: MRI Conditional Pacemaker

Limitations

- Study not designed to assess basic device performance
- Study not powered to detect low rate (but meaningful) safety issues
- Clinical study considered confirmatory to comprehensive preclinical data

Review focus

- Trial design important, but...
- Preclinical issues present the larger obstacle before FDA would allow proceeding to clinical

Example 3: Heart Valve

- Design: single-arm
- Effectiveness
 - Stenosis, leakage, and orifice area
 - Compared to normal published values
- Safety
 - 30-day and intermediate (1-year) complication rate
 - Compared to OPC
- Additional restrictions
 - 800 patient-years
 - At least 300 patients for at least 1 year

Conclusions

- One size does <u>not</u> fit all for device trials
- Pivotal studies should be designed to evaluate whether there is a "reasonable assurance of safety and effectiveness."
- PMA approvability is based upon a Benefit-Risk assessment which strongly considers outcome of primary safety and effectiveness endpoints.

Conclusions

- Secondary endpoints are generally used to support claims if the primary endpoints are successful.
- All endpoint analyses and definitions should be clearly pre-specified in the approved clinical protocol.
- Trial design is challenging. We recommend talking to FDA early through the presubmission process.

Online Resources

- CDRH Learn Online Regulatory Training Tool
 - Over 50 Medical device and Radiological Health modules
 - Video and PowerPoint presentations available 24/7.
 - Certificate of completion upon passing post-tests
 - Many modules are translated into Chinese and Spanish
 - http://www.fda.gov/Training/CDRHLearn/
- Device Advice Online Regulatory Information
 - Searchable by topic
 - http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/
- Division of Small Manufacturers, International, and Consumer Assistance (DSMICA) – Live Regulatory Assistance
 - Technical Assistance for the Medical Device Industry
 - Available 8:00 am 5:00 pm EST
 - 800-638-2041 or 301-796-7100
 - DSMICA@fda.hhs.gov